KCMC 2022 Relays

1. (a) Determine the smallest positive integer a such that $3780 \cdot a$ is a perfect square.
(b) Let $Z=\frac{a}{5}-10$

A jar contains some coins, potentially quarters, dimes, nickels, and pennies, and the average value of these coins is Z cents. When another nickel and three pennies are added to the collection, the average value of each coin becomes 7 cents. How many coins were originally in the jar?
(c) Let $Z=4 b-15$.

A six-sided die, with face numbers $1,2,3,4,5,6$, is weighted so that the probability of a number being rolled is proportional to that number. What is the probability of rolling a number that is less than Z ?
(d) Let $Z=\frac{10}{3 c}$.

Solve for the value of x such that the area of a square with each side length $x+Z$ equals the area of a right triangle with both side lengths equal to $2 x$.
2. (a) You roll a fair six-sided die 3 times. What is the probability all three die come up as the same number?
(b) Let $Z=324 a$.

Solve the following system of equations for b.

$$
\begin{array}{r}
4 b+3 y=7 \\
-2 b-9 y=Z
\end{array}
$$

(c) Let $Z=b$.

Let $f(x)$ be the equation of the line perpendicular to the line $y=Z x+7$ and through the point (12, -5). Find $f(18)$
(d) Let $Z=5-c$

The average of three numbers is 13 . The second number is four larger than the first number. The average of the second and third number is Z . Let d be the largest of the three numbers.
3. (a) Determine the number of triples of positive integers (x, y, z) such that $1<x<y<z$ and $x+y+z=21$.
(b) Let $Z=\frac{a+11}{10}$.

Suppose there are 2 mystery books, 4 biographies, and Z comic books in a pile. In how many ways can all these books be arranged on a shelf if books of the same genre must be adjacent to each other?
(c) Let $Z=\frac{b}{72}-10$.

There are 80 people at a breakfast buffet; 40 of them choose muffins, 36 choose bagels, and 34 choose fruit cups. Of these, 28 of them choose bagels and fruit, 21 choose muffins and fruit, 17 choose bagels and muffins, Z choose all three. How many people do not choose any muffins nor bagels nor fruit cups.
(d) Let $Z=\frac{c-8}{2}-4$.

Square A has side length z and is contained in a larger square B such that the side length of square B equals the length of the diagonal of square A.
Similarly, square B is contained in a larger square C such that the side length of square C equals the length of the diagonal of square B.
Square C is contained in a circle such that the the diameter of the circle equals the length of the diagonal of square C. Find the area of the circle.

4. (a) How many integers, n for $1 \leq n \leq 100$ are divisible by at least one of 3 and 5 ?
(b) Let $Z=a-43$.

Billy-Bob started at home and took a ride on his quad. Unfortunately it ran out of gas and he needed to walk back home. If the quad averaged 15 mph , and he walked back at a rate of 3 mph , how many miles did he ride if he arrived back home in Z hours?
(Note: Assume he took the same route both on the quad and walking with no detours.)
(c) Let $Z=b-6$

There are 8 democrats, 10 republicans, and Z independents elected in a state. They need to form a new committee with 4 democrats, 4 republicans, and 2 independents. How many ways can you form the committee?
(d) Let $Z=\frac{1}{10} \cdot\left(\frac{c}{100}-2\right)-74$

Consider the equations $|x|+x+y=12$ and $x+|y|-y=Z$. Find $\frac{x}{y}$ in reduced terms.
5. (a) Express 17 as the difference of two squares. What is the larger of the two numbers being squared? (i.e. If $17=a^{2}-b^{2}$, what is a ?)
(b) Let $Z=a$.

Suppose there are Z people at a party and each person shakes hands with everyone else at the party exactly once. How many handshakes take place?
(c) Let $Z=2 b+1$.

Determine the value of n such that $1+2^{n}+4^{n}=Z$.
(d) Let $Z=c+1$.

Calculate the distance between the points of intersection of $y=x^{2}+x$ and $y=3 x+Z$.
6. (a) Suppose we group sets of 3 positive integers as follows: Set 1: $\{1,3,5\}$, Set 2: $\{7,9,11\}$, Set 3: $\{13,15,17\}$, etc. What is the sum of the numbers in Set 2022?
(b) Let $Z=\frac{b-387}{12,000}$

Jerry and Duncan are running a 150 meter race. Jerry runs at a constant speed of 5 meters per second, and Duncan runs at a constant speed of Z meters per second. How many more seconds does it take Duncan to finish the race?
(c) Let $Z=b+10$.

The distance between floors for a building is the distance from the bottom of one floor to the bottom of the next floor. In the Holy Cross dorm, the distance between floors 4 and 6 is Z meters and the distance between adjacent floors is the same throughout the building. If the Holy Cross dorm has 9 floors, what is the distance between floor 1 and floor 9 ?
(d) Let $Z=\frac{c}{4}$

Betty would like to buy some figurines. She can buy 2 figurines for $\$ 4$ or 5 figurines for $\$ 8$. If she has Z dollars to spend, what is the maximum number of figurines she can buy?

